资源类型

期刊论文 24

年份

2022 7

2021 2

2020 5

2019 1

2018 1

2016 1

2015 1

2013 1

2011 1

2009 1

2008 1

2004 1

2000 1

展开 ︾

关键词

天然气水合物 3

专用技术装备 1

南海北部陆坡 1

大洋综合钻探 1

天然气水合物;勘探与试采;储量巨大;研究现状;发展战略 1

天然气水合物;开采技术;降压;固态流化;联合方法 1

开采模式 1

数学模型 1

新能源 1

注温水-降压联合开采方法 1

流动保障 1

流变仪 1

海洋天然气水合物 1

深部地球科学 1

相似准则 1

相对黏度 1

结核矿 1

连续油 1

通用技术装备 1

展开 ︾

检索范围:

排序: 展示方式:

Evaluation of precipitation behavior of zirconium molybdate hydrate

Liang ZHANG, Masayuki TAKEUCHI, Tsutomu KOIZUMI, Izumi HIRASAWA

《化学科学与工程前沿(英文)》 2013年 第7卷 第1期   页码 65-71 doi: 10.1007/s11705-013-1314-9

摘要: In the dissolution step of spent nuclear fuel, there is a world-concern problem that zirconium molybdate hydrate precipitates as a byproduct, and accumulates in some reprocessing equipments. In order to prevent this accumulation, we have developed a new method based on the controlled reaction crystallization of zirconium molybdate hydrate (ZMH) in the reprocessing solution, followed by solid liquid separation. In order to measure the particle size of ZMH, batch crystallization experiments were conducted by varying nitric acid concentration and operating temperature. In result, almost all particle sizes scatter around 1 μm on average, despite the higher concentration of nitric aid and operating temperature, and then small particles grow up as an aggregate sticking to the crystallizer. Moreover, polymorph and color changing were observed by varying the concentration of nitric acid and reaction time. These results suggest that crystal color and adhesiveness are closely related to the particle size of ZMH. And the control of nitric acid concentration and small particle growth would be the useful technique to prevent the ZMH sticking.

关键词: spent nuclear fuel     zirconium molybdate hydrate     cleaning method     accumulation    

Sulfonated poly(ether ether ketone)/zirconium tricarboxybutylphosphonate composite proton-exchange membranes

GAO Qijun, HUANG Mianyan, WANG Yuxin, CAI Yuquan, XU Li

《化学科学与工程前沿(英文)》 2008年 第2卷 第1期   页码 95-101 doi: 10.1007/s11705-008-0012-5

摘要: Sulfonated poly(ether ether ketone) (SPEEK) is a very promising alternative membrane material for direct methanol fuel cells. However, with a fairly high degree of sulfonation (DS), SPEEK membranes can swell excessively and even dissolve at high temperature. This restricts membranes from working above a high tolerable temperature to get high proton conductivity. To deal with this contradictory situation, insolvable zirconium tricarboxybutylphosphonate (Zr(PBTC)) powder was employed to make a composite with SPEEK polymer in an attempt to improve temperature tolerance of the membranes. SPEEK/Zr(PBTC) composite membranes were obtained by casting a homogeneous mixture of Zr(PBTC) and SPEEK in N,N-dimethylacetamide on a glass plate and then evaporating the solvent at 60°C. Many characteristics were investigated, including thermal stability, liquid uptake, methanol permeability and proton conductivity. Results showed significant improvement not only in temperature tolerance, but also in methanol resistance of the SPEEK/Zr(PBTC) composite membranes. The membranes containing 30 wt-% ∼ 40 wt-% of Zr(PBTC) had their methanol permeability around 10 cm·s at room temperature to 80°C, which was one order of magnitude lower than that of Nafion115. High proton conductivity of the composite membranes, however, could also be achieved from higher temperature applied. At 100% relative humidity, above 90°C the conductivity of the composite membrane containing 40 wt-% of Zr(PBTC) exceeded that of the Nafion115 membrane and even reached a high value of 0.36 S·cm at 160°C. Improved applicable temperature and high conductivity of the composite membrane indicated its promising application in DMFC operations at high temperature.

关键词: homogeneous mixture     PBTC     zirconium tricarboxybutylphosphonate     Nafion115     DMFC    

Research progress on hydrate plugging in multiphase mixed rich-liquid transportation pipelines

Shuyu SONG, Zhiming LIU, Li ZHOU, Liyan SHANG, Yaxin WANG

《能源前沿(英文)》 2022年 第16卷 第5期   页码 774-792 doi: 10.1007/s11708-020-0688-x

摘要: The plugging mechanism of multiphase mixed rich-liquid transportation in submarine pipeline is a prerequisite for maintaining the fluid flow in the pipeline and ensuring safe fluid flow. This paper introduced the common experimental devices used to study multiphase flow, and summarized the plugging progress and mechanism in the liquid-rich system. Besides, it divided the rich-liquid phase system into an oil-based system, a partially dispersed system, and a water-based system according to the different water cuts, and discussed the mechanism of hydrate plugging. Moreover, it summarized the mechanism and the use of anti-agglomerates in different systems. Furthermore, it proposed some suggestions for future research on hydrate plugging. First, in the oil-based system, the effect factors of hydrates are combined with the mechanical properties of hydrate deposit layer, and the hydrate plugging mechanism models at inclined and elbow pipes should be established. Second, the mechanism of oil-water emulsion breaking in partially dispersed system and the reason for the migration of the oil-water interface should be analyzed, and the property of the free water layer on the hydrate plugging process should be quantified. Third, a complete model of the effect of the synergy of liquid bridge force and van der Waals force in the water-based system on the hydrate particle coalescence frequency model is needed, and the coalescence frequency model should be summarized. Next, the dynamic analysis of a multiphase mixed rich-liquid transportation pipeline should be coupled with the process of hydrate coalescence, deposition, and blockage decomposition. Finally, the effects of anti-agglomerates on the morphological evolution of hydrate under different systems and pipeline plugging conditions in different media should be further explored.

关键词: hydrate     rich-liquid phase     plugging mechanism     coalescence     deposition     anti-agglomerate    

Modified iron-molybdate catalysts with various metal oxides by a mechanochemical method: enhanced formaldehyde

Xue Liu, Lingtao Kong, Shengtao Xu, Chaofan Liu, Fengyun Ma

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1099-1110 doi: 10.1007/s11705-020-2008-8

摘要: A mechanochemical method was employed to prepare modified iron molybdate catalysts with various metal salts as precursors. The physicochemical properties of the iron molybdate catalysts were characterized, and their performances in catalyzing the reaction from methanol to formaldehyde (HCHO) were evaluated. Iron molybdate catalysts doped with Co(NO ) ·6H O and Al(NO ) ·9H O resulted in high HCHO yields. Compared with a commercial catalyst, the HCHO yields in the reaction with the modified catalyst at an optimal Co/Mo molar ratio reached 97.37%. According to chemical state analysis, the formation of CoO and the efficient decrease in the MoO sublimation rate could be important factors enhancing the HCHO yield in reactions catalyzed with iron molybdate doped with different Co/Mo mole ratios.

关键词: iron molybdate catalyst     metal oxides     methanol to formaldehyde     Co/Mo ratio     formaldehyde yield    

Fundamental characteristics of gas hydrate-bearing sediments in the Shenhu area, South China Sea

Xin LYU, Qingping LI, Yang GE, Junlong ZHU, Shouwei ZHOU, Qiang FU

《能源前沿(英文)》 2021年 第15卷 第2期   页码 367-373 doi: 10.1007/s11708-020-0714-z

摘要: The basic physical properties of marine natural gas hydrate deposits are important to the understanding of seabed growth conditions, occurrence regularity, and occurrence environment of natural gas hydrates. A comprehensive analysis of the core samples of drilling pressure-holding hydrate deposits at a depth of 1310 m in the Shenhu area of the South China Sea was conducted. The experimental results indicate that the particle size in the hydrate sediment samples are mainly distributed in the range from 7.81 µm to 21.72µm, and the average particle size decreases as the depth of the burial increases. The X-ray CT analytical images and surface characteristics SEM scan images suggest that the sediment is mostly silty clay. There are a large number of bioplastics in the sediment, and the crack inside the core may be areas of hydrate formation.

关键词: natural gas hydrate     Shenhu area     reservoirs characteristics    

Progress in use of surfactant in nearly static conditions in natural gas hydrate formation

Zhen PAN, Yi WU, Liyan SHANG, Li ZHOU, Zhien ZHANG

《能源前沿(英文)》 2020年 第14卷 第3期   页码 463-481 doi: 10.1007/s11708-020-0675-2

摘要: Natural gas hydrate is an alternative energy source with a great potential for development. The addition of surfactants has been found to have practical implications on the acceleration of hydrate formation in the industrial sector. In this paper, the mechanisms of different surfactants that have been reported to promote hydrate formation are summarized. Besides, the factors influencing surfactant-promoted hydrate formation, including the type, concentration, and structure of the surfactant, are also described. Moreover, the effects of surfactants on the formation of hydrate in pure water, brine, porous media, and systems containing multiple surfactants are discussed. The synergistic or inhibitory effects of the combinations of these additives are also analyzed. Furthermore, the process of establishing kinetic and thermodynamic models to simulate the factors affecting the formation of hydrate in surfactant-containing solutions is illustrated and summarized.

关键词: gas hydrate     kinetic hydrate promoter     compounding     model     surfactant     mechanism    

Flow synthesis of a novel zirconium-based UiO-66 nanofiltration membrane and its performance in the removal

Feichao Wu, Yanling Wang, Xiongfu Zhang

《化学科学与工程前沿(英文)》 2020年 第14卷 第4期   页码 651-660 doi: 10.1007/s11705-019-1819-y

摘要: In this work, a thin zirconium-based UiO-66 membrane was successfully prepared on an alumina hollow fiber tube by flow synthesis, and was used in an attempt to remove -nitrophenol from water through a nanofiltration process. Two main factors, including flow rate and synthesis time, were investigated to optimize the conditions for membrane growth. Under optimal synthesis conditions, a thin UiO-66 membrane of approximately 2 µm in thickness was fabricated at a flow rate of 4 mL·h for 30 h. The -nitrophenol rejection rate for the as-prepared UiO-66 membrane applied in the removal of -nitrophenol from water was only 78.1% due to the existence of membrane defects caused by coordinative defects during membrane formation. Post-synthetic modification of the UiO-66 membrane was carried out using organic linkers with the same flow approach to further improve the nanofiltration performance. The result showed that the -nitrophenol rejection for the post-modified membrane was greatly improved and reached over 95%. Moreover, the post-modified UiO-66 membrane exhibited remarkable long-term operational stability, which is vital for practical application.

关键词: UiO-66 membrane     flow synthesis     nanofiltration     p-nitrophenol removal    

Engineering zirconium-based metal-organic framework-801 films on carbon cloth as shuttle-inhibiting interlayers

《化学科学与工程前沿(英文)》 2022年 第16卷 第4期   页码 511-522 doi: 10.1007/s11705-021-2068-4

摘要: Lithium-sulfur batteries have been regarded as the next-generation rechargeable batteries due to their high theoretical energy density and specific capacity. Nevertheless, the shuttle effect of lithium polysulfides has hindered the development of lithium-sulfur batteries. Herein, a novel zirconium-based metal-organic framework-801 film on carbon cloth was developed as a versatile interlayer for lithium-sulfur batteries. This interlayer has a hierarchical porous structure, suitable for the immobilization of lithium polysulfides and accommodating volume expansion on cycling. Moreover, the MOF-801 material is capable of strongly adsorbing lithium polysulfides and promoting their catalytic conversion, which can be enhanced by the abundant active sites provided by the continuous structure of the MOF-801 films. Based on the above advantages, the lithium-sulfur battery, with the proposed interlayer, delivers an initial discharge capacity of 927 mAh·g–1 at 1 C with an extremely low decay rate of 0.04% over 500 cycles. Additionally, a high area capacity of 4.3 mAh·cm–2 can be achieved under increased S loading.

关键词: lithium-sulfur batteries     metal-organic framework-801 film     interlayer     shuttle effect    

Impacts of CO2 and H2S on the risk of hydrate formation during pipeline transport of natural gas

Solomon A. Aromada, Bjørn Kvamme

《化学科学与工程前沿(英文)》 2019年 第13卷 第3期   页码 616-627 doi: 10.1007/s11705-019-1795-2

摘要: Evaluation of maximum content of water in natural gas before water condenses out at a given temperature and pressure is the initial step in hydrate risk analysis during pipeline transport of natural gas. The impacts of CO and H S in natural gas on the maximum mole-fractions of water that can be tolerated during pipeline transport without the risk of hydrate nucleation has been studied using our novel thermodynamic scheme. Troll gas from the North Sea is used as a reference case, it contains very negligible amount of CO and no H S. Varying mole-fractions of CO and H S were introduced into the Troll gas, and the effects these inorganic impurities on the water tolerance of the system were evaluated. It is observed that CO does not cause any distinguishable impact on water tolerance of the system, but H S does. Water tolerance decreases with increase in concentration of H S. The impact of ethane on the system was also investigated. The maximum mole-fraction of water permitted in the gas to ensure prevention of hydrate formation also decreases with increase in the concentration of C H like H S. H S has the most impact, it tolerates the least amount of water among the components studied.

关键词: hydrate     hydrogen Sulphide     CO2     dew point     pipeline    

in numerical simulations on multiphase flow and thermodynamics in production of natural gas from gas hydrate

Lin ZUO, Lixia SUN, Changfu YOU

《能源前沿(英文)》 2009年 第3卷 第2期   页码 152-159 doi: 10.1007/s11708-009-0017-x

摘要: Natural gas hydrates are promising potential alternative energy resources. Some studies on the multiphase flow and thermodynamics have been conducted to investigate the feasibility of gas production from hydrate dissociation. The methods for natural gas production are analyzed and several models describing the dissociation process are listed and compared. Two prevailing models, one for depressurization and the other for thermal stimulation, are discussed in detail. A comprehensive numerical method considering the multiphase flow and thermodynamics of gas production from various hydrate-bearing reservoirs is required to better understand the dissociation process of natural gas hydrate, which would be of great benefit to its future exploration and exploitation.

关键词: numerical simulation     natural gas hydrate     dissociation     thermodynamics     multiphase flow    

Efficient promotion of methane hydrate formation and elimination of foam generation using fluorinated

Quan CAO, Dongyan XU, Huanfei XU, Shengjun LUO, Rongbo GUO

《能源前沿(英文)》 2020年 第14卷 第3期   页码 443-451 doi: 10.1007/s11708-020-0683-2

摘要: Methane hydrate preparation is an effective method to store and transport methane. In promoters to facilitate methane hydrate formation, homogeneous surfactant solutions, sodium dodecyl sulfate (SDS) in particular, are more favorable than heterogeneous particles, thanks to their faster reaction rate, more storage capacity, and higher stability. Foaming, however, could not be avoided during hydrate dissociation with the presence of SDS. This paper investigated the ability of five fluorinated surfactants: potassium perfluorobutane sulfonate (PBS), potassium perfluorohexyl sulfonate (PHS), potassium perfluorooctane sulfonate (POS), ammonium perfluorooctane sulfonate (AOS), and tetraethylammonium perfluorooctyl sulfonate (TOS) to promote methane hydrate formation. It was found that both PBS and PHS achieve a storage capacity of 150 ( , the volume of methane that can be stored by one volume of water) within 30 min, more than that of SDS. Cationic ions and the carbon chain length were then discussed on their effects during the formation. It was concluded that PBS, PHS, and POS produced no foam during hydrate dissociation, making them promising promoters in large-scale application.

关键词: methane hydrate     fluorinated surfactants     homogeneous promoter     foam elimination     stability    

Progress and prospect of hydrate-based desalination technology

Jibao ZHANG, Shujun CHEN, Ning MAO, Tianbiao HE

《能源前沿(英文)》 2022年 第16卷 第3期   页码 445-459 doi: 10.1007/s11708-021-0740-5

摘要: With the continuous growth of the population and the improvement of production, the shortage of freshwater has plagued many countries. The use of novel technologies such as desalination to produce fresh water on a large scale has become inevitable in the world. Hydrate-based desalination (HBD) technology has drawn an increasing amount of attention due to its mild operation condition and environmental friendliness. In this paper, literature on hydrate-based desalination is comprehensively analyzed and critically evaluated, focuses on experimental progress in different hydrate formers that have an impact on thermodynamics and dynamics in hydrate formation. Besides, various porous media promotion is investigated. Besides, the hydrate formation morphology and hydrate crystal structure with different hydrate formers are analyzed and compared. Moreover, molecular dynamic simulation is discussed to further understand microscopic information of hydrate formation. Furthermore, simulations of the HBD process by considering the energy consumption are also investigated. In conclusion, the hydrated based desalination is a potential technology to get fresh water in a sustainable way.

关键词: gas hydrates     desalination     crystal morphology     molecular dynamic     cold energy    

Analysis of physical properties of gas hydrate-bearing unconsolidated sediment samples from the ultra-deepwater

《能源前沿(英文)》 2022年 第16卷 第3期   页码 509-520 doi: 10.1007/s11708-021-0786-4

摘要: Marine natural gas hydrate has recently attracted global attention as a potential new clean energy source. Laboratory measurements of various physical properties of gas hydrate-bearing marine sediments can provide valuable information for developing efficient and safe extraction technology of natural gas hydrates. This study presents comprehensive measurement results and analysis of drilled hydrate-bearing sediments samples recovered from Qiongdongnan Basin in the South China Sea. The results show that the gas hydrate in the core samples is mainly methane hydrate with a methane content of approximately 95%, and the other components are ethane and carbon dioxide. The saturation of the samples fluctuates from 2%–60%, the porosity is approximately 38%–43%, and the water content is approximately 30%–50%, which indicate that high water saturation means that timely drainage should be paid attention to during hydrate extraction. In addition, the median diameter of the sediment samples is mainly distributed in the range of 15 to 34 μm, and attention should be paid to the prevention and control of sand production in the mining process. Moreover, the thermal conductivity is distributed in the range of 0.75 to 0.96 W/(m∙K) as measured by the flat plate heat source method. The relatively low thermal conductivity of hydrates at this study site indicates that a combined approach is encouraged for natural gas production technologies. It is also found that clay flakes and fine particles are attached to the surface of large particles in large numbers. Such characteristics will lead to insufficient permeability during the production process.

关键词: natural gas hydrates     physical properties analysis     hydrate-bearing sediments    

Key issues in development of offshore natural gas hydrate

Shouwei ZHOU, Qingping LI, Xin LV, Qiang FU, Junlong ZHU

《能源前沿(英文)》 2020年 第14卷 第3期   页码 433-442 doi: 10.1007/s11708-020-0684-1

摘要: As a new clean energy resource in the 21st century, natural gas hydrate is considered as one of the most promising strategic resources in the future. This paper, based on the research progress in exploitation of natural gas hydrate (NGH) in China and the world, systematically reviewed and discussed the key issues in development of natural gas hydrate. From an exploitation point of view, it is recommended that the concepts of diagenetic hydrate and non-diagenetic hydrate be introduced. The main factors to be considered are whether diagenesis, stability of rock skeleton structure, particle size and cementation mode, thus NGHs are divided into 6 levels and used unused exploitation methods according to different types. The study of the description and quantitative characterization of abundance in hydrate enrichment zone, and looking for gas hydrate dessert areas with commercial exploitation value should be enhanced. The concept of dynamic permeability and characterization of the permeability of NGH by time-varying equations should be established. The ‘Three-gas co-production’ (natural gas hydrate, shallow gas, and conventional gas) may be an effective way to achieve early commercial exploitation. Although great progress has been made in the exploitation of natural gas hydrate, there still exist enormous challenges in basic theory research, production methods, and equipment and operation modes. Only through hard and persistent exploration and innovation can natural gas hydrate be truly commercially developed on a large scale and contribute to sustainable energy supply.

关键词: natural gas hydrate exploitation offshore     diagenetic and non-diagenetic hydrate     solid-state fluidization method     dessert in enrichment area     three-gas combined production on gas hydrate abundance    

Mechanism and control factors of hydrate plugging in multiphase liquid-rich pipeline flow systems: a

Shuwei ZHANG, Liyan SHANG, Zhen PAN, Li ZHOU, You GUO

《能源前沿(英文)》 2022年 第16卷 第5期   页码 747-773 doi: 10.1007/s11708-022-0830-z

摘要: There is nothing illogical in the concept that hydrates are easily formed in oil and gas pipelines owing to the low-temperature and high-pressure environment, although requiring the cooperation of flow rate, water content, gas-liquid ratio, and other specific factors. Therefore, hydrate plugging is a major concern for the hydrate slurry pipeline transportation technology. In order to further examine potential mechanisms underlying these processes, the present paper listed and analyzed the significant research efforts specializing in the mechanisms of hydrate blockages in the liquid-rich system, including oil-based, water-based, and partially dispersed systems (PD systems), in gathering and transportation pipelines. In addition, it summarized the influences of fluid flow and water content on the risk of hydrate blockage and discussed. In general, flow rate was implicated in the regulation of blockage risk through its characteristic to affect sedimentation tendencies and flow patterns. Increasing water content can potentiate the growth of hydrates and change the oil-water dispersion degree, which causes a transition from completely dispersed systems to PD systems with a higher risk of clogging. Reasons of diversity of hydrate plugging mechanism in oil-based system ought to be studied in-depth by combining the discrepancy of water content and the microscopic characteristics of hydrate particles. At present, it is increasingly necessary to expand the application of the hydrate blockage formation prediction model in order to ensure that hydrate slurry mixed transportation technology can be more maturely applied to the natural gas industry transportation field.

关键词: hydrate     flow rate     water content     mechanism of pipeline blockage     rich liquid phase system    

标题 作者 时间 类型 操作

Evaluation of precipitation behavior of zirconium molybdate hydrate

Liang ZHANG, Masayuki TAKEUCHI, Tsutomu KOIZUMI, Izumi HIRASAWA

期刊论文

Sulfonated poly(ether ether ketone)/zirconium tricarboxybutylphosphonate composite proton-exchange membranes

GAO Qijun, HUANG Mianyan, WANG Yuxin, CAI Yuquan, XU Li

期刊论文

Research progress on hydrate plugging in multiphase mixed rich-liquid transportation pipelines

Shuyu SONG, Zhiming LIU, Li ZHOU, Liyan SHANG, Yaxin WANG

期刊论文

Modified iron-molybdate catalysts with various metal oxides by a mechanochemical method: enhanced formaldehyde

Xue Liu, Lingtao Kong, Shengtao Xu, Chaofan Liu, Fengyun Ma

期刊论文

Fundamental characteristics of gas hydrate-bearing sediments in the Shenhu area, South China Sea

Xin LYU, Qingping LI, Yang GE, Junlong ZHU, Shouwei ZHOU, Qiang FU

期刊论文

Progress in use of surfactant in nearly static conditions in natural gas hydrate formation

Zhen PAN, Yi WU, Liyan SHANG, Li ZHOU, Zhien ZHANG

期刊论文

Flow synthesis of a novel zirconium-based UiO-66 nanofiltration membrane and its performance in the removal

Feichao Wu, Yanling Wang, Xiongfu Zhang

期刊论文

Engineering zirconium-based metal-organic framework-801 films on carbon cloth as shuttle-inhibiting interlayers

期刊论文

Impacts of CO2 and H2S on the risk of hydrate formation during pipeline transport of natural gas

Solomon A. Aromada, Bjørn Kvamme

期刊论文

in numerical simulations on multiphase flow and thermodynamics in production of natural gas from gas hydrate

Lin ZUO, Lixia SUN, Changfu YOU

期刊论文

Efficient promotion of methane hydrate formation and elimination of foam generation using fluorinated

Quan CAO, Dongyan XU, Huanfei XU, Shengjun LUO, Rongbo GUO

期刊论文

Progress and prospect of hydrate-based desalination technology

Jibao ZHANG, Shujun CHEN, Ning MAO, Tianbiao HE

期刊论文

Analysis of physical properties of gas hydrate-bearing unconsolidated sediment samples from the ultra-deepwater

期刊论文

Key issues in development of offshore natural gas hydrate

Shouwei ZHOU, Qingping LI, Xin LV, Qiang FU, Junlong ZHU

期刊论文

Mechanism and control factors of hydrate plugging in multiphase liquid-rich pipeline flow systems: a

Shuwei ZHANG, Liyan SHANG, Zhen PAN, Li ZHOU, You GUO

期刊论文